M2MO: Modélisation Aléatoire, Finance et Data Science

Master en statistique, probabilités et finance - Université Paris 7 - Paris Diderot

 
 
 
 
 
 
Courses Group Data Science
 
 

Optimization for machine learning

Imprimer
Lecturer:  G. Garrigos
Period:  
Term 1
ECTS: 3
Schedule 24h

Lire la suite...

Data science and statistics for industry

Imprimer
Lecturers: M. Abdel-Sayed & L. Massoulard
Period: 
Term 2
ECTS: 3
Schedule 3 hours of lectures/Tutorials per week

Lire la suite...

Modern approach for dimension reduction

Imprimer

Lecturer: A. Célisse

Period: Term 3

ECTS: 6

Schedule: 2h lecture + 2h Tutorials per week

Lire la suite...

Deep learning

Imprimer
Lecturer: I. Giulini
Period: 
Term  3
ECTS: 3
Schedule: See Timetable
Présentation
 
L’objectif du cours est de présenter les concepts fondamentaux du deep learning jusqu’aux architectures plus avancées telles que les Transformers et les GANs.
Le cours prévoit 4 séances de TP.

Programme
· Introduction to Deep Learning
· Feed-Forward Neural Networks
· Convolutional Neural Networks for image classification
· Network architectures for object detection and image segmentation
· Recurrent Neural Networks, LSTM units, GRUs
· Natural Language Processing
· Neural Machine Translation, Attention models, the Transformer Network
· Deep Generative Modeling (VAE, GAN)

 

Bibliographie

  • Goodfellow, I. and Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
  • Chollet, F. and Allaire, J. J. (2018). Deep Learning with R. Manning Pub.
  • Chollet, F. and Allaire, J. J. (2018). Deep Learning with Python. Manning Pub.

Statistics in high dimension

Imprimer

Lecturer: B-E. Chérief Abdellatif

Period: Term 3

ECTS: 3

Schedule: 2h lectures per week 

Lire la suite...