- Core modules
- Stochastic calculus and diffusion processes (S Péché )
- Markov Chain (M. Merle)
- Introduction to machine learning (S. Gaiffas and A. Fisher)
- Basics of Data modelling and statisctiacl inference (S. Delattre)
- Quantitative Finance Modules
- Derivatives modelling (S. Crépey & S. Scotti)
- Financial products (B. Bruder)
- Quant analysis (S. Crépey)
- Energy markets (R. Aid & P. Gruet)
- Advanced interest rate modelling (Z. Grbac)
- Data Science Modules
- Statistical learning (S. Clemencon and E. Chautru)
- Optimization for machine learning (G. Garrigos)
- Graphical models for machine learning (F. Rossi)
- Projects in Data Science: CRM (K. Tribouley)
- Methods for large/high dimensional data sets (S. Boucheron)
- Introduction to reinforcement learning (J. Lussange)
- Data science and statistics for industry (M. Sayed and L. Massoulard)
- Deep learning (S. Gaiffas)
- Asset Management Modules
- Stochastic control in finance (H. Pham)
- Nonlinear methods in Finance (M.C. Quenez)
- Algorithmic trading (O. Gueant)
- Quantitative Asset management (B. Bruder)
- Computer Science Modules
- C++ (O. Carton)
- Statistical softwares (S. Souchet)
- Risk Management Modules
- Credit risk modelling (R. Rouge)
- Risk measures and risk Management (H. Pham & A. El Alami)
- Copulae and financial applications (J.D. Fermanian)
- Statistics & Machine learning in Finance Modules
- Financial time series (J.M. Bardet)
- Prediction and sequential investments (J.Y. Audibert)
- Statistical inference for diffusion processes (A. Gloter)
- Point processes and applications in finance (E. Locherbach)
- Machine learning for finance (H. Pham)
- Numerical & computational Methods Modules
- PDE methods in finance (Y. Achdou & O. Bokanowski)
- Monte Carlo Methods (N.Frikha)
- Advanced probabilistic numerical methods in finance (J.-F. Chassagneux)